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Decision Making for Nuclear Emergencies

Decision makers (DMs) are nowadays often required to make decisions
in complex evolving environments.

=⇒ they need to be assisted by a decision support system (DSS).

Traditionally a DSS has often consisted of several component DSSs,
which guide the estimation and the forecasting of the different relevant
quantities.

Each sub-DSS addresses only part of the overall picture.
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Decision Making for Nuclear Emergencies

Each component DSS is usually separately built and informed by a
separate panel of experts with the relevant knowledge.

For a potential DM to be properly supported, these disparate judgments
need to be consistently drawn together to give an overall description of
the problem.

A real or virtual system manager, or SupraBayesian (SB), is responsible
for the aggregation of these local judgments in order to derive overall
expected utility scores.

This unifying and integrating framework around which the SB combines
component DSSs into a single entity will be called

integrating decision support system (IDSS)
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Features of IDSSs

Integration of sub-DSSs into a single Bayesian entity, by stochastically
managing the input/output relationships between them:

It is well know that treating these deterministically, DMs can be
directed to choose the wrong course of action (see e.g. Leonelli
and Smith 2013).



Features of IDSSs

It is distributed, meaning that it is sufficient for each panel to
individually deliver their own judgments about the module they oversee:

The SB can devolve the responsibility of each aspect to appropriate
experts, making the system more robust to misspecification of
beliefs (Cooke 1991);

Autonomous update of beliefs and intervention in the system;

Fast answers to users’ queries about the judgments associated
with the process and the decisions;

Potential DMs able to defend their decisions arguing that she has
used best expert judgments and the outputs of a coherent IDSS to
identify her expected utility maximizing policy.
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Features of IDSSs

It can be dynamic:

In crisis management it is critical to have the flexibility to allow for
algorithmic updates of the relevant probabilities;

This is because DMs need to make decisions every time new
information is gathered throughout the crisis.



The SEU model

Broadly speaking this consists of three main components:
a decision space D which includes the decisions d available to the
DM;
a probability density f over the unknown state y ∈ Y of a vector of
relevant random variables Y ;
a utility function u(d ,y) describing the DM’s preferences.

Utility is a real-valued function unique up to positive affine
transformations, u : D × Y → R, such that

∀ (d1,y1), (d2,y2) ∈ D×Y, u(d1,y1) ≥ u(d2,y2)⇔ (d1,y1) � (d2,y2),

ū(d) = E(u(d ,Y )) =

∫
Y

u(d ,y)f (y)dy =

∫
Y

u(d ,y)

∫
Θ

f (y |θ)f (θ)dθdy .

d∗ = arg max
d∈D

ū(d).
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Notation and assumptions

Y (d) = (Y1(d), . . . ,Yn(d)), d ∈ D;

Panels of experts G1, . . . ,Gm;

Panel Gi responsible for Y i(d) ⊂ Y (d) parametrized by θi ;

We call SupraBayesian (SB) the implicit owner of the panels beliefs;

Variational independence is required i.e.

Θ = Θ1 × · · · ×Θm
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Assumptions

All agree on the class of utility functions U admitted by the IDSS;

All agree on the decision rules d ∈ D examined by the IDSS;

All agree the variables Y defining the process, where for each
d ∈ D, each u ∈ U is a function of Y , together with a set of
qualitative statements about the dependence between various
functions of Y and θ (structural consensus);

U, D and the structural consensus define the Common Knowledge
(CK)- class;

All agree to take on the beliefs of each panel as their own;



Properties for IDSSs

Adequacy: call an IDSS adequate for a CK-class when the SB can
unambiguously calculate her expected utility score, for any
decisions d ∈ D she might take and any utility function u ∈ U she
might be given by a user, from the beliefs of panel Gi , i = 1, . . . ,m;

Soundness: call an IDSS sound for a CK-class if it is adequate
and, by adopting the structural consensus, the SB can coherently
admit all the panels’ assessments as her own, the SB’s underlying
belief model being shared with those of the relevant panels.



A simple example

Two binary random variables Y1(d), Y2(d);

θ1 = P(Y1 = 1), θ20 = P(Y2 = 1|Y1 = 0), θ21 = P(Y2 = 1|Y1 = 1);

θ2 = (θ21, θ20);

µ = (µ00, µ10, µ01, µ11) expectation of θ̄ = (θ̄00, θ̄10, θ̄01, θ̄11) where

θ̄00 = (1− θ1)(1− θ20) θ̄10 = θ1(1− θ21) θ̄01(1− θ1)θ20 θ̄11 = θ1θ21

suppose θ1 ⊥⊥ θ2 and let

µ1 = E(θ1) µ2 = (µ20, µ21) = E(θ20, θ21)

Then

µ̄00 = (1−µ1)(1−µ20) µ̄10 = µ1(1−µ21) µ̄01(1−µ1)µ20 µ̄11 = µ1µ21
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Panel independence and likelihood separation

The SB exhibits panel independence if ⊥⊥ m
i=1θi ;

π(θ) =
m∏

i=1

πi(θi)

A likelihood function is panel separable if

l(θ|x ,d) =
m∏

i=1

li(θi |ti(x ,d),d)

Then the posterior

π∗(θ) =
m∏

i=1

π∗i (θi)

where
π∗i (θi) ∝ li(θi |ti(x ,d),d)πi(θi)

and therefore ⊥⊥ m
i=1θi |x
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Independence models

Assume ⊥⊥ m
i=1Yi |θi ,d ;

let u(d ,y) =
∑m

i=1 bi(d)ui(d , yi);

then ū(d) =
∑m

i=1 ūi(d), where

ūi(d) =

∫
Θi

ūi(d ,θi)π(θi)dθi

and
ūi(d ,θi) =

∫
Yi

biui(d ,y i)f (y i |θi ,d)dy i ;

No panel independence needed!!!!



The Multiregression Dynamic Model

The MDM is defined through a DAG G and the following equations:
Specifically,

Observation Equations:

Y t (i) = Ft (i)Tθt (i) + v t (i), v t (i) ∼ (0,Σt (i));

System Equations:

θt (i) = Gt (i)θt−1(i) + w t (i), w t (i) ∼ (0,Wt (i));

Prior Distributions:

θ0(i)|I0 ∼ (m0(i),C0(i))

Ft (i) is a function of the parent series;



An example

Consider an MDM defined as
Y2(2) = θ2(1,2)Y2(1) + v2(2);
θ2(1,2) = θ1(1,2) + w2(2);
Y1(2) = θ1(1,2)Y1(1) + v1(2);
Y2(1) = θ2(1,1) + v2(1);
θ2(1,1) = θ1(1,1) + w2(1);
Y1(1) = θ1(1,1) + v1(1);

E(Vt (i)) = λt (i), E(Wt (i)) = σt (i), E(θ1(1, j)) = a1(1, j) and
V (θ1(1, j)) = τ1(1, j).



An example

Utility factorization:

u(y1(1), y1(2), y2(1), y2(2)) = u(y1(1)) + u(y1(2)) + u(y2(1)) + u(y2(2)),

where u(yt (i)) = −yt (i)2.



An example

Overall expected utility E(u(y1(1), y1(2), y2(1), y2(2))) =

− 2a2
1(1,2)τ1(1,1)− τ1(1,2)(a1(1,1)2 + τ1(1,1))

− λ1(2)− 2a2
1(1,2)a2

1(1,1)− λ1(1)(a1(1,2)2 + τ1(1,2))− λ2(1)

− (1 + σ2(2))(σ2(1) + λ2(1) + τ1(1,1) + a1(1,1))

− (σ2(1) + λ2(1))(τ1(1,2) + a2
1(1,2))− τ1(1,1)− λ1(1)− a2

1(1,1)
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Discussion

IDSSs provide a coherent and efficient framework around which a
formal Bayesian decision analysis can be performed;

a variety of models, both preferential and probabilistic, can be used
within the CK-class;

we developed message-passing algorithm for the distributed
computation of expected utilities within IDSSs;

missing data can break the distributivity of the system and
approximated methods need to be developed to address this issue;

for the purpose of decision making, the algebraic structure of
expected utilities can be very helpful;
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