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Computer models

Computer model represented by function f with inputs x and outputs
y

y = f(x).

f usually not available in closed form.

f constructed from modeller’s understanding of the process.
There may be no physical input-output data.

f may be deterministic.
Computer experiment: evaluating f at difference choices of x

A ‘model run’: evaluating f at a single choice of x.
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Uncertainty in model inputs

Model may be set up to accept ‘controllable’ inputs only.
But there may be other parameters/coefficients/variables ‘hard-wired’
within the model.

We define the input x to include these other numerical values used to
calculate the outputs.
Suppose that there is a true input value, X, with at least some
elements of X uncertain.
What is our uncertainty about Y = f(X)?
We quantify uncertainty about X with a probability distribution pX
Then need to obtain the distribution pY .
Can propagate uncertainty using Monte Carlo: sample X1, . . . , XN

from pX and evaluate f(X1), . . . , f(XN )

What do we do if f is computationally expensive?
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Computationally expensive models
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Want f(x1), . . . , f(xN ), but can only evaluate f(x1), . . . , f(xn), for
n << N .

Could estimate f given f(x1), . . . , f(xn)
but can we quantify uncertainty in the estimate?

A statistical inference problem:
Treat f as an uncertain function
Derive a probability distribution for f given f(x1), . . . , f(xn) (an
“emulator”)

Popular technique: Gaussian process emulation (Sacks et al 1989)
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Gaussian process emulators
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Example: 18 input climate model, 255 model runs
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Probabilistic sensitivity analysis of model outputs

Interested in Y = f(X), where X is uncertain with distribution
pX(x).
Sensitivity analysis: which elements in X = {X1, . . . , Xd} are most
responsible for the uncertainty in Y = f(X)?
Write X = (Xu,X−u). Consider ‘importance’ of Xu via

V arXu
{EX−u

(Y |Xu)}

The expected reduction in variance if value of Xu is learnt, because

V ar(Y ) = V arXu
{EX−u

(Y |Xu)}+ EXu
{V arX−u

(Y |Xu)}

Can speed up computation with emulator (Oakley & O’Hagan, 2004)
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Variance-based sensitivity analysis

— pX1(x1)

— E(Y |X1 = x1)

— pX2(x2)

— E(Y |X2 = x2)
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Example1: modelling Rotavirus

Model developed by GlaxoSmithKline. Predicts incidence of rotavirus
in a population before and after a vaccine is administered to a
proportion of the infant population
Deterministic compartmental model, 672 compartments (16 disease
stages × 42 age classes)
Inputs include transmission rates between age groups, reduction in risk
following each infection
Outputs: time series of rotavirus incidence for six age groups following
vaccination programme
GSK analysis investigated sensitivity of output to 9 inputs, using 8200
model runs
We consider sensitivity of output to 20 inputs, using 340 model runs

1MUCM case study: analysis by John Paul Gosling, Hugo Maruri-Aguilar,
Alexis Boukouvalas
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Variance based sensitivity analysis

Analysis for an individual output: no. of infections in 2-3 age group after 2
years
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Need to think carefully about input distributions

Consider
f(x) = exp(−x),

with Y = f(X) and
X ∼ U [0, b].

In this case we have

V ar(Y ) =
b− 2 + 4 exp(−b)− (b+ 2) exp(−2b)

2b2
,

Increasing b increases the variance of X but decreases the variance of Y
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Sensitivity analysis for decision making
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Calibration/ inverse problems

Example problem from Kennedy and O’Hagan (2001)

A Gaussian plume deposition model f(xcont, xcalib) predicts deposition
of radionuclides at a location xcont following release of unknown
concentration Xcalib from point source
Measurements of the true deposition z(xcont) at a limited number of
locations xcont available.
Aim: to predict deposition at other locations using both data and
model.
What value of xcalib do we use?
And what happens if the model is wrong?
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Calibrating an imperfect model

Wish to estimate Xcalib = g:
acceleration due to Earth’s
gravity

I drop a tennis ball from my
office window at height xcont,
and time its descent to the
ground
Estimate g via

t =
√
2xcontg

Will have error in measurements,
so take replicates
The more measurements I take,
the more certain I become about
the wrong value
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The calibration model

Kennedy and O’Hagan (2001)

z(xcont,i) = f(xcont,i, Xcalib) + δ(xcont,i) + εi

δ(xcont,i) is the discrepancy (bias) between model output and reality.

Doesn’t always go down well with modellers!
“I’m horrified! You should be improving your models with
better physics!”

Accounting for model discrepancy important, otherwise
can become certain about a ‘wrong’ input value
model predictions can be spuriously precise

In some settings, can infer δ() from observations, but in others, (prior)
judgements important
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Calibration with emulators

Wish to find x such that f(x) is ‘close’ to observation z
Model is slow to run, so will use an emulator to explore input space
Emphasis now on discarding region of input space where the model
can’t fit the data
First run the model and construct an emulator for f
Assess the “implausibility” of an input value x via

I(x) =
|z − E{f(x)}]|

[V ar{f(x)}+ V ar(ε) + V ar(δ)]1/2
.

Do further runs in the non-implausible region and rebuild emulator
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Toy example
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Case study2: HIV in Uganda

“Mukwano”: a dynamic, stochastic, individual based model that
simulates sexual partnerships and HIV transmission
Births, deaths, partnership formation and dissolution and HIV
transmission were modelled using time-dependent rates

22 inputs, e.g. proportions of men and women in “high sexual activity”
groups, transition probability of HIV per sex act during primary stage
of infection

2I. Andrianakis, I. Vernon, N. McCreesh, T.J. McKinley, J.O., R. Nsubuga,
M. Goldstein and R.G. White
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Calibration data were collected from a rural general population cohort
in South-West Uganda. The cohort was established in 1989 and
currently consists of the residents of 25 villages

18 demographic, behavioural and epidemiological outputs, e.g., male
and female HIV prevalences at three time points

Model run on a high performance cluster with 240 nodes. The run
time for a single simulation was around 10 minutes
History matching iterated through 10 waves, 200-500 model runs per
wave
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Model runs after history matching
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Summary

Emulators for computationally expensive models. Helpful also in
calibration.
Sensitivity analysis tools for investigating input uncertainty.
Model discrepancy - essential for ‘complete’ uncertainty quantification.

Further reading/papers at

jeremy-oakley.staff.shef.ac.uk
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